This article was published as a part of the Data Science Blogathon.
Style transfer is a developing field in neural networks and it is a very useful feature that can be integrated into social media and AI apps. Several neural networks can map and transfer image styles to an input image as per the training data. In this article, we will look into JojoGAN and the process of using just one reference style to train and generate sketches of any image with that style.
One-shot face stylization can be used in AI apps, social media filters, fun applications, and business use cases. With the rising popularity of AI-generated image and video filters, along with their use in social media reels and short videos, images, one-shot face stylization is a useful feature that these apps and social media companies can integrate into their products for the end-user.
So let’s narrow down on a popular GAN architecture for generating face stylizations at one go – JojoGAN.
JojoGAN architecture works on a simple process of mapping a style to an image and learning the mapping to reproduce it for other unseen images in one shot. It uses a reversal process for GANs and the style mixing property of StyleGAN to create a one-to-one combined dataset pair from just one style. This dataset then is used for fine-tuning StyleGAN, and new input images can be used which the JojoGAN will convert to that specific style based on GAN Inversion.
JojoGAN Architecture and Workflow
JojoGAN can be trained in very little time (less than 1 minute) with just one reference style and produces high-quality stylized images.
Some examples of JojoGAN generated stylized images:
JojoGAN Examples
The stylized images can be generated on a variety of different input stylizations and can be modified.
Let’s look at the implementation of JojoGAN to generate stylized portraits. Several pre-trained models are available, and they can be trained on our style images, or the model can be modified to change the styles at minute levels.
Clone the JojoGAN repo and import the necessary libraries. Create some folders in Google Colab storage for storing the inversion code, style images, and models.
!git clone https://github.com/mchong6/JoJoGAN.git %cd JoJoGAN !pip install tqdm gdown scikit-learn==0.22 scipy lpips dlib opencv-python wandb !wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip !sudo unzip ninja-linux.zip -d /usr/local/bin/
import torch torch.backends.cudnn.benchmark = True from torchvision import transforms, utils from util import * from PIL import Image import math import random import os import numpy from torch import nn, autograd, optim from torch.nn import functional from tqdm import tqdm import wandb from model import * from e4e_projection import projection from google.colab import files from copy import deepcopy from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive from google.colab import auth from oauth2client.client import GoogleCredentials
Download the model files with Pydrive. A set of drive ids are available for pre-trained models. These pre-trained models can be used for generating stylized images on the go, and have different levels of accuracy. Later, user-created models can be trained.
#Download models #optionally enable downloads with pydrive in order to authenticate and avoid drive download limits. download_with_pydrive = True device = 'cuda' #['cuda', 'cpu']
!wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 !bzip2 -dk shape_predictor_68_face_landmarks.dat.bz2 !mv shape_predictor_68_face_landmarks.dat models/dlibshape_predictor_68_face_landmarks.dat %matplotlib inline
drive_ids = { "stylegan2-ffhq-config-f.pt": "1Yr7KuD959btpmcKGAUsbAk5rPjX2MytK", "e4e_ffhq_encode.pt": "1o6ijA3PkcewZvwJJ73dJ0fxhndn0nnh7", "restyle_psp_ffhq_encode.pt": "1nbxCIVw9H3YnQsoIPykNEFwWJnHVHlVd", "arcane_caitlyn.pt": "1gOsDTiTPcENiFOrhmkkxJcTURykW1dRc", "arcane_caitlyn_preserve_color.pt": "1cUTyjU-q98P75a8THCaO545RTwpVV-aH", "arcane_jinx_preserve_color.pt": "1jElwHxaYPod5Itdy18izJk49K1nl4ney", "arcane_jinx.pt": "1quQ8vPjYpUiXM4k1_KIwP4EccOefPpG_", "arcane_multi_preserve_color.pt": "1enJgrC08NpWpx2XGBmLt1laimjpGCyfl", "arcane_multi.pt": "15V9s09sgaw-zhKp116VHigf5FowAy43f", "sketch_multi.pt": "1GdaeHGBGjBAFsWipTL0y-ssUiAqk8AxD", "disney.pt": "1zbE2upakFUAx8ximYnLofFwfT8MilqJA", "disney_preserve_color.pt": "1Bnh02DjfvN_Wm8c4JdOiNV4q9J7Z_tsi", "jojo.pt": "13cR2xjIBj8Ga5jMO7gtxzIJj2PDsBYK4", "jojo_preserve_color.pt": "1ZRwYLRytCEKi__eT2Zxv1IlV6BGVQ_K2", "jojo_yasuho.pt": "1grZT3Gz1DLzFoJchAmoj3LoM9ew9ROX_", "jojo_yasuho_preserve_color.pt": "1SKBu1h0iRNyeKBnya_3BBmLr4pkPeg_L", "art.pt": "1a0QDEHwXQ6hE_FcYEyNMuv5r5UnRQLKT", }
# from StyelGAN-NADA class Downloader(object): def __init__(self, use_pydrive): self.use_pydrive = use_pydrive
if self.use_pydrive: self.authenticate() def authenticate(self): auth.authenticate_user() gauth = GoogleAuth() gauth.credentials = GoogleCredentials.get_application_default() self.drive = GoogleDrive(gauth) def download_file(self, file_name): file_dst = os.path.join('models', file_name) file_id = drive_ids[file_name] if not os.path.exists(file_dst): print(f'Downloading {file_name}') if self.use_pydrive: downloaded = self.drive.CreateFile({'id':file_id}) downloaded.FetchMetadata(fetch_all=True) downloaded.GetContentFile(file_dst) else: !gdown --id $file_id -O $file_dst downloader = Downloader(download_with_pydrive)
downloader.download_file('stylegan2-ffhq-config-f.pt') downloader.download_file('e4e_ffhq_encode.pt')
Load the original and finetuning generators. Set the transfomer for resizing and normalizing the images.
latent_dim = 512 # Load original generator original_generator = Generator(1024, latent_dim, 8, 2).to(device) ckpt = torch.load('models/stylegan2-ffhq-config-f.pt', map_location=lambda storage, loc: storage) original_generator.load_state_dict(ckpt["g_ema"], strict=False) mean_latent = original_generator.mean_latent(10000)
# to be finetuned generator generator = deepcopy(original_generator)
transform = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] )
Set the input image location. Align and crop face and restyle the projection.
#image to the test_input directory and put the name here filename = 'face.jpeg' #@param {type:"string"} filepath = f'test_input/{filename}' name = strip_path_extension(filepath)+'.pt'
# aligns and crops face aligned_face = align_face(filepath)
# my_w = restyle_projection(aligned_face, name, device, n_iters=1).unsqueeze(0) my_w = projection(aligned_face, name, device).unsqueeze(0)
Input Image – Elon Musk
Select the pre-trained sketch type and choose the checkpoint without color preservation for better results.
plt.rcParams['figure.dpi'] = 150 pretrained = 'sketch_multi' #['art', 'arcane_multi', 'sketch_multi', 'arcane_jinx', 'arcane_caitlyn', 'jojo_yasuho', 'jojo', 'disney'] #Preserve color tries to preserve color of original image by limiting family of allowable transformations.
if preserve_color: ckpt = f'{pretrained}_preserve_color.pt' else: ckpt = f'{pretrained}.pt'
Load the checkpoint and generator and set a seed value, and start generating the stylized image. The input image used for Elon Musk will be stylized according to the sketch type.
#Generate results n_sample = 5#{type:"number"} seed = 3000 #{type:"number"} torch.manual_seed(seed) with torch.no_grad(): generator.eval() z = torch.randn(n_sample, latent_dim, device=device) original_sample = original_generator([z], truncation=0.7, truncation_latent=mean_latent) sample = generator([z], truncation=0.7, truncation_latent=mean_latent) original_my_sample = original_generator(my_w, input_is_latent=True) my_sample = generator(my_w, input_is_latent=True)
# display reference images if pretrained == 'arcane_multi': style_path = f'style_images_aligned/arcane_jinx.png' elif pretrained == 'sketch_multi': style_path = f'style_images_aligned/sketch.png' else: style_path = f'style_images_aligned/{pretrained}.png' style_image = transform(Image.open(style_path)).unsqueeze(0).to(device) face = transform(aligned_face).unsqueeze(0).to(device)
my_output = torch.cat([style_image, face, my_sample], 0)
Generated Result
The results are generated for pre-trained sketch type ‘Jojo’ and look fairly accurate.
Now let’s look at training the GAN on self-created styles/sketches.
Select some sketches of faces or even create some face sketches of your own and load these image(s) for training the GAN, and set the path. Crop and Align the face and perform GAN inversion.
names = ['1.jpg', '2.jpg', '3.jpg'] targets = [] latents = [] for name in names: style_path = os.path.join('style_images', name) assert os.path.exists(style_path), f"{style_path} does not exist!" name = strip_path_extension(name)
# crop and align the face style_aligned_path = os.path.join('style_images_aligned', f'{name}.png') if not os.path.exists(style_aligned_path): style_aligned = align_face(style_path) style_aligned.save(style_aligned_path) else: style_aligned = Image.open(style_aligned_path).convert('RGB')
# GAN invert style_code_path = os.path.join('inversion_codes', f'{name}.pt') if not os.path.exists(style_code_path): latent = projection(style_aligned, style_code_path, device) else: latent = torch.load(style_code_path)['latent'] latents.append(latent.to(device)) targets = torch.stack(targets, 0) latents = torch.stack(latents, 0)
Finetune StyleGAN by adjusting the alpha, color preservation, and setting the number of iterations. Load the discriminator for perceptual loss and reset the generator.
#Finetune StyleGAN #alpha controls the strength of the style alpha = 1.0 # min:0, max:1, step:0.1 alpha = 1-alpha
#preserve color of original image by limiting family of allowable transformations preserve_color = False #Number of finetuning steps. num_iter = 300 #Log training on wandb and interval for image logging use_wandb = False log_interval = 50
if use_wandb: wandb.init(project="JoJoGAN") config = wandb.config config.num_iter = num_iter config.preserve_color = preserve_color wandb.log( {"Style reference": [wandb.Image(transforms.ToPILImage()(target_im))]}, step=0)
# load discriminator for perceptual loss discriminator = Discriminator(1024, 2).eval().to(device) ckpt = torch.load('models/stylegan2-ffhq-config-f.pt', map_location=lambda storage, loc: storage) discriminator.load_state_dict(ckpt["d"], strict=False)
# reset generator del generator generator = deepcopy(original_generator) g_optim = optim.Adam(generator.parameters(), lr=2e-3, betas=(0, 0.99))
Train the generator to generated image from the latent space, and optimize the loss.
if preserve_color: id_swap = [9,11,15,16,17]
mean_w = generator.get_latent(torch.randn([latents.size(0), latent_dim]).to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1) in_latent = latents.clone() in_latent[:, id_swap] = alpha*latents[:, id_swap] + (1-alpha)*mean_w[:, id_swap] img = generator(in_latent, input_is_latent=True) with torch.no_grad(): real_feat = discriminator(targets) fake_feat = discriminator(img) loss = sum([functional.l1_loss(a, b) for a, b in zip(fake_feat, real_feat)])/len(fake_feat) if use_wandb: wandb.log({"loss": loss}, step=idx) if idx % log_interval == 0: generator.eval() my_sample = generator(my_w, input_is_latent=True) generator.train() wandb.log( {"Current stylization": [wandb.Image(my_sample)]}, step=idx) g_optim.zero_grad() loss.backward() g_optim.step()
Now generate the results. Below the results have been generated for both the original and sample images for comparison.
#Generate results n_sample = 5 seed = 3000 torch.manual_seed(seed) with torch.no_grad(): generator.eval() z = torch.randn(n_sample, latent_dim, device=device) original_sample = original_generator([z], truncation=0.7, truncation_latent=mean_latent) sample = generator([z], truncation=0.7, truncation_latent=mean_latent) original_my_sample = original_generator(my_w, input_is_latent=True) my_sample = generator(my_w, input_is_latent=True)
# display reference images style_images = [] for name in names: style_path = f'style_images_aligned/{strip_path_extension(name)}.png' style_image = transform(Image.open(style_path)) style_images.append(style_image) face = transform(aligned_face).to(device).unsqueeze(0) style_images = torch.stack(style_images, 0).to(device)
my_output = torch.cat([face, my_sample], 0) output = torch.cat([original_sample, sample], 0)
JojoGAN has been able to accurately map and transfer user-defined styles in a fast and effective manner. The key takeaways are:
Thus JojoGAN is the ideal neural network for style transfer regardless of the style type, shapes and color and can thus be a very useful feature in various social media apps and AI applications.
Featured Image Architecture Examples Elon MuskMona Lisa Paper
Suvojit is a Senior Data Scientist at DunnHumby. He enjoys exploring new and innovative ideas and techniques in the field of AI and tries to solve real-world machine learning problems by thinking out of the box. He writes about the latest advancements in Computer Vision and Natural Language processing. You can follow him on LinkedIn.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
Lorem ipsum dolor sit amet, consectetur adipiscing elit,